
Cross-Language Code Analysis and Refactoring

Philip Mayer, Andreas Schroeder

Chair for Programming & Software Engineering, Institute for Computer Science

Ludwig-Maximilians-Universität München, Germany

{mayer,schroeder}@pst.ifi.lmu.de

Abstract—Software composed of artifacts written in multiple
(programming) languages is pervasive in today’s enterprise,
desktop, and mobile applications. Since they form one system,
artifacts from different languages reference one another, thus
creating what we call semantic cross-language links. By their very
nature, such links are out of scope of the individual programming
language; they are ignored by most language-specific tools and
are often only established — and checked for errors — at
runtime. This is unfortunate since it requires additional testing,
leads to brittle code, and lessens maintainability. In this paper,
we advocate a generic approach to understanding, analyzing
and refactoring cross-language code by explicitly specifying and
exploiting semantic links with the aim of giving developers the
same amount of control over and confidence in multi-language
programs they have for single-language code today.

I. INTRODUCTION

Most software systems, whether they are small apps for

mobile devices or large-scale enterprise applications, are not

written in any single language [1]. Instead, a multitude of lan-

guages is used in both development and operation of software

— this includes standard imperative or object-oriented pro-

gramming languages such as Java, C, C++, or Ruby, database

languages such as SQL, UI description languages (such as

HTML or different XML dialects), and a multitude of domain-

specific languages for purposes such as system configuration.

Additional languages are used for software-related tasks such

as automating the build (Ant, Maven) or deployment (mostly,

vendor-specific tools). Thus, multi-language programming is

also multi-paradigm programming.

Using multiple programming languages in one project

(polyglot programming [2]) follows the language-as-a-tool

idea: Using each language, which includes DSLs, for the

purpose they were built ideally increases the readability of

the code and prevents artificial constructs in languages origi-

nally built for another purpose [3]. Another reason for multi-

language software applications (MLSAs) [4] is integration of

legacy systems, as there is typically much knowledge encoded

in legacy source code. For these two reasons, we believe that

diversity in programming languages will always exist.

Since the individual software artifacts written in different

languages still form one software system, they need to inter-

act and/or share information. That is, there is a mechanism

encoded in some sort of framework which, based on a certain

convention or configuration, binds artifacts together.

We use the term semantic link to refer to these underlying

semantic connections between artifacts written in different

languages since they link two or more artifacts together,

regardless of how the link is actually defined. Correct semantic

links are key to working MLSAs: Even if artifacts in two

languages are correct in themselves, they may still not work

in combination if the link is broken. Since semantic links are

outside the scope of any single language, they are usually

established at runtime and are furthermore not checked by

the tools written for the language. Although the information

on how to resolve such references exists, it is in many cases

deeply embedded in framework or (virtual) machine code and

only invoked at runtime, not at design-time.
Thus, developers must stay aware of semantic links at all

times not to break the system when changing code; program

understanding, too, requires another level of awareness. Using

multiple languages thus requires additional testing, leads to

brittle code, and lessens maintainability. Thinking further,

developers may even refrain from using the right language

for a particular issue due to these problems, and choose a

less-suitable, but better supported language instead.
In this paper, we argue that semantic links are too important

to MLSA development to be left implicit and buried in

framework or VM code. We thus advocate a generic approach
to explicitly specifying and using semantic links, which we

call XLL (short for Cross Language Links). Once captured in

an explicit way, we can use these links for supporting three

separate use cases:

• Program Understanding: Resolved semantic links enable

code navigation and viewing links between languages;

• Code Analysis: Failure to resolve a link suggests an

error or at least a possible problem in the multi-language

program to be investigated;

• Refactoring: Awareness of links can be used to propagate

changes between languages, thus keeping links intact.

In our literature review, we have not found a generic

approach to cross-language link specification and exploitation

with encompasses all three of these use cases.
Our specific interest in this paper lies in MLSAs which

employ languages of different paradigms, in particular a multi-

purpose host language and different domain-specific languages

such as relational languages and XML-based configurations

or declarative UI descriptions. Semantic links in this context

are often established by (sometimes transformed) names, and

when wrong, fail catastrophically at runtime. We also believe

that IDE integration in this context is important to make this

approach directly usable for developers.
This paper is structured as follows: We begin by giving two

motivational examples for our work in section II. We then

2012 IEEE 12th International Working Conference on Source Code Analysis and Manipulation

978-0-7695-4783-1/12 $26.00 © 2012 IEEE

DOI 10.1109/SCAM.2012.11

94

discuss the work on cross-language code analysis and refac-

toring available in the literature in section III, investigating

areas which still need work. Our own approach to specifying

and exploiting semantic links is laid out in section IV, and we

briefly discuss an implementation in section V. We conclude

in section VI.

II. MOTIVATING EXAMPLES

We give two examples which we have used as motivation.

Both are taken from real-life applications.

A. Ruby on Rails

Firstly, in the area of web-based enterprise applications, we

find that Ruby on Rails applications [5] tightly integrate with

relational databases. Using the “convention over configura-

tion” approach, the Ruby on Rails framework assumes that

for each entity class, a table in the linked relational database

exists which has the pluralized name of the class name.

Single-value columns are bound to class properties without

requiring a declaration. However, multi-valued relationships

between classes and thus tables are specified by using three

class-level method invocations, namely belongs to, has one,

and has many (a fourth, has and belongs to many, is ig-

nored here for simplicity). Column names for relationships are

assumed to follow a certain schema, namely, another table (or

entity) is referenced by ’entityName id’ columns. Obviously,

such columns must exist if declared in a class; the other way

round, while not so important, is worth a warning as well.

Thus, we have two types of semantic links: The first one

linking entity classes and tables, the second linking entity

relationships to columns in linked tables. The second link is

only relevant if the first is established. If either of these two

links are missing, the system will fail on the first access to an

entity class or class association.

The following code shows an example of the Ruby side:

class Thesis < ActiveRecord::Base {
has_many :categories
has_one :status

}
class Category < ActiveRecord::Base {

belongs_to :thesis
}
class Status < ActiveRecord::Base {

belongs_to :thesis
}

This code expects the following setup in the database, which

must be set up by migrations before they can be used.

table theses (id INT)
table categories (id INT,

thesis_id INT)
table statuses (id INT, status_id INT)

B. Android

Secondly, in the mobile world, we find that Android applica-
tions [6] are built using Java code for writing the logic, while a

custom XML dialect is used for describing the user interface.

Here, each screen is described in its own file, which is accessed

from Java by a constant generated from the actual location of

the file. Second, each component which is to be referenced

from Java (this mainly applies to buttons, text fields, and

other clickable or editable elements) has a unique ID, which

is declared in XML and referenced, again, in Java.
In contrast to the Ruby example, layouts and IDs are

referenced explicitly in the Android framework by us-

ing specific methods; setContentView in the first and

findViewById in the second case. Google provides a tool

which generates numerical constants from layout files and

XML IDs into a class called R; these constants must then

be used as parameters in the above methods. However, this

mechanism does not check whether an ID used in a Java class

is actually declared in the layout file referenced in this class,

which is another source of errors.
Thus, we have again two link types: First, a reference to a

layout file, and second, a reference to a component ID within

a specific layout file. If a referenced layout or ID does not in

fact exist in the correct place, the system will fail at runtime.
The following code shows the Java part of these links:

WelcomeActivity extends Activity {

public void onCreate(...) {

setContentView(R.layout.welcome);

... = findViewById(R.id.button);

... = findViewById(R.id.textView);
}

}

On the XML side, a layout file called welcome.xml is

required in the directory res/layouts, which must contain

the two ID declarations referenced above:

<LinearLayout xmlns:android...>

<Button a:id="@+id/button" .../>
<TextView a:id="@+id/textView" .../>

</LinearLayout>

III. EXISTING WORK

Existing work in the area of multi-language software can be

roughly categorized into two categories; the first is program

understanding and analysis, the second is refactoring. Program

understanding and analysis deals with easing comprehen-

sion of a system and gathering metrics, which can be done

on source or binary representations, and generally involves

creating a new representation of the information retrieved.

Refactoring, on the other hand, deals directly with source code

and must stay aware of the origin of artifacts at all times.

Since we aim at supporting both use cases in our work, we

investigate publications from both fields. A third section deals

with more general work.

95

A. Analysis

We begin with the analysis field. To our knowledge, the first

work which explicitly deals with multi-language software sys-

tems is the description of the PolyCARE tool by Linos in 1998

[7], a tool intended for facilitating program understanding and

re-engineering. Although the tool itself handles each language

separately and does not link artifacts of multiple languages (as

also discussed in [8]), PolyCARE seems to be the first tool

with an explicit focus on multi-language systems.

Linos et al. have since created two interesting additional

tools. The first one (Multi-Language Tool, MT), described

in 2003 in [8], is again intended for program understanding

and re-engineering and is targeted at host-to-foreign language

dependencies between C/C++ and Java code, i.e., at language-

crossing function calls. An interactive, animation-based user

interface allows exploration (viewing) of cross-language de-

pendencies. The second tool, described in 2007 in [4], is

geared towards metrics calculation. Instead of being based

on source code, intermediate-language level code from the

.NET platform is used. This approach eases the calculation

of metrics across languages since the different syntax of each

language does no longer need to be parsed.

Staying in the area of program understanding and analysis,

another early work was published in 1998 by Kullbach et

al. [9], in which a case study on a multi-language system

integrating COBOL and JCL is presented. Here, source code

is first translated into an object-based repository; the repository

can then be easily queried for information about the combined

program. Kullbach et al. identify so-called conceptual rela-
tions which are quite similar to our idea of semantic links.

Analysis of the system is performed using the tool GUPRO

MetaCARE, in which the GReQL query language can be used

to query the repository.

A similar approach to Kullbach et al. is used by Deruelle

et al. in their 2001 work [10]. Here, source and byte code is

converted into an XML-based graph structure and queried. A

new feature is the ability to track change propagation by graph

rewriting. The resulting (transitive) changes are annotated to

the graph which allows developers to see affected components;

a precursor to automated refactorings as discussed in the next

section.

Another method for analyzing dependencies between Java

and C/C++ is discussed by Moise and Wong in 2005 [11].

Their approach is built on top of the Source Navigator [12]

tool; source code is first extracted into facts which conform to

the GXL (Graphical eXchange Language) format which can be

used by several reverse-engineering tools. The algorithm for

matching Java and C/C++ artifacts is coded by hand. Source

Navigator uses so-called pluggable extractors for producing

facts about each language, a prerequisite to a flexible archi-

tecture.

A very interesting approach to multi-language analysis has

been published in 2010 by Cossette et al. [13]. Their tool,

DSketch, is integrated into Eclipse [14] and uses pattern

matching to find dependencies between artifacts, which are

again similar to our semantic links. Developers write pattern

specifications directly on the source code (which includes

Java, XML, etc.) and a heuristic approach is used for finding

and displaying matching elements right in the IDE. The use

case here is manually finding related code through queries

which greatly improves code understanding; since the tool uses

approximations it is not directly usable for refactorings.

Finally, Pfeiffer and Wasowski discuss dependencies be-

tween artifacts in different languages and the components

defining those artifacts in [15]. The motivation and idea

behind their work is similar to ours in that they regard inter-

language dependencies and cite a lack of knowledge about

these as a major maintenance problem. Furthermore, they

use a pattern language for specifying dependencies between

definitions and references. The approach is performed offline

(on EMF-XML files generated from actual source [16]) and

focuses on visualization of established links, i.e. broken links

are not considered. In their approach, links are defined through

key/reference pairs which are directional. Therefore, annota-

tion of different levels of severity is not possible.

A common theme to the previously mentioned program

understanding and analysis approaches — with the exception

of [13] — is the use of a (more or less abstract) model for

representing facts about the system. Some tools are entirely

independent of source code, such as the metrics calculation

tool by Linos et al. [4], while others are closer; however, in

general, fine-grained links back into the source code are not

required since manipulation is not intended.

B. Refactoring

As far as we know, the first work to explicitly deal with

refactoring of multi-language software is Strein et al., 2006

[17], [18]. A tree-grammar based common meta-model is

used to capture information across languages and is filled

by individual language adapters called front-ends, which are

similar to the extractors of Moise and Wong [11]. However,

Strein et al. add enough information to the common model to

allow direct textual modifications in the source code.

Analyses and refactorings, finally, only access the informa-

tion in the common model and can thus be implemented in a

language-agnostic way. As an example, the rename refactoring

for a method can be implemented by looking for method

references, which are, on this level, the same elements across

languages.

Strein et al. point out that the common meta-model is not a

union model of all languages, but only contains the language

concepts necessary for analysis and refactoring. Still, adding

new languages with new concepts means that the meta-model

needs to change; thus, meta-model evolution is explicitly

discussed in [18].

The work of Strein et al. has been particularly inspiring

for our own work although we use a different approach to

knowledge representation and refactoring implementation: As

we shall point out later, we do not employ a common meta-

model and thus, there is no language-agnostic layer. Instead,

our semantic links are established directly between artifacts

96

of different languages. Instead of re-writing refactoring logic

on a common layer, refactorings for individual languages are

thus extended and combined.

In 2008, Chen and Johnson [19] rightly point out that more

tool support for common use cases in cross-language linking

is required to encourage developers to employ refactorings for

increasing understandability and maintainability of their pro-

grams; but also that doing so is hard. As in our case, reliance

on domain specific languages is a trigger for their work: They

present a case study for extending the Java rename refactoring

in Eclipse to consider references in XML documents used by

the Struts, Hibernate, and Spring frameworks. The refactoring
participant mechanism of the Java Development Tools (JDT,

[20]) is used to implement the Java-based extensions.

Although their work does not present a generic approach,

it similar in spirit since it explicitly addresses dealing with

the semantic links between Java and XML fragments which

are embedded within the frameworks mentioned above. Also

mentioned is the difference between unidirectional and bidi-

rectional implementations of refactorings, i.e. from where a

refactoring can be triggered, which we address below as well.

In the same vein as Chen and Johnson, Kempf et al.

[21] present an implementation of another JDT refactoring

participant, this time extending the reach of the Java rename

refactoring to the Groovy language.

Finally, in a work from 2011, Schink et al. [22] describe

their work on implementing multi-language versions of the

Rename Method and Push Down Method refactorings for

Java, Hibernate, and SQL. Also addressed is the refactoring

Introduce Default Value which is, refreshingly, a non-OO

refactoring from the relational world. However, it is concluded

that a general approach to multi-language refactorings —

across all possible MLSAs — is not feasible while keeping to

the established notions of semantic preservation.

A common theme of the refactoring approaches presented is

that multi-language refactoring is desirable, but hard to achieve

in general. The approaches presented are quite diverse: Strein

et al. [17] use a full-blown cross-language meta-model and

implement the complete refactoring in a language-agnostic

way; by contrast, the implementations of Chen and Johnson

[19] and Kempf et al. are implemented as JDT refactoring

participants and work directly on the individual language

level [21]. The work of Schink et al. additionally addresses

relational databases [22].

As far as we know, the explicit specification of semantic

links used in some of the analysis-related works has not yet

been employed for refactorings. We will discuss a generic

approach for exploiting such links in section IV.

C. Other Work

Another interesting work on multi-language programming

deals with the business perspective. Published by Fjeldberg in

2008 [2], this work lists advantages and disadvantages of poly-

glot programming. To quote: Perceived advantages of polyglot
programming are productivity and maintainability, and the

perceived disadvantages are knowledge, maintainability, and
tool support.

In the same vein, Kontogiannis et al. [23] list open issues

for discussion in the area of comprehension and maintenance

of multi-language applications (2006). Again, tool support is

mentioned. On the data gathering side, questions of formal-

ization and modeling of multi-language systems, extraction,

discovery and storage of extracted information, and how to

support exploration, queries, and knowledge management are

identified. On the presentation side, there is the question of

how to present information in a usable way. Finally, multi-

language software, and the methods and tools created to

support it is expected to have an impact on the software

maintenance process which is not yet known.

IV. THE XLL APPROACH

As indicated in the introduction and the previous chapter,

our aim is to support developers in multi-language develop-

ment in three use cases: Program understanding, code analysis,

and refactoring. We support all three use cases by allowing

developers to explicitly declare the semantic links between
language artifacts.

Of course, what needs to be specified are actually link
types between artifact types, for example the fact that each

Ruby entity class must have a corresponding table with the

pluralized class name; the actual resulting semantic links

between concrete artifacts should be computed.

There are several requirements for this approach:

• Artifact specification and access. To be able to specify

link types between artifact types, we must have a way of

describing which artifact types are available, which at-

tributes they have, and how they are related (for example,

a Java class has methods; both class and method being

artifact types). Furthermore, we must be able to access

both the types and the actual instances in a concrete

system. If we want to support developers in an IDE,

additional functionality for navigation, error markings,

and refactorings must be supported.

• Link type specification. Specification of links is core to

our approach. Links must be expressive enough to support

linking artifacts in complex environments such as the Java

language where the interesting artifacts might be buried

in several layers of classes or methods. Furthermore,

there should be support for change propagation — to

support refactoring of an artifact, we require a way of

suggesting appropriate changes in related artifacts. On

the other hand, the link language should be readable and

usable by developers.

• Resolving semantic links. Link resolution, i.e. finding

actual links for link types within a concrete software sys-

tem, must be addressed and supported by the approach.

The resolution must support both finding successful links

and unsuccessful links, since both carry relevant informa-

tion for developers.

• Exploiting link information. Program understanding is

concerned with successful links — these enable code

97

navigation or visualizing dependencies. Code analysis

is concerned with unsuccessful links — these indicate

errors in the system. Finally, refactoring is concerned with

keeping successful links intact, whether by preventing

developers in certain actions or propagating change.

In the following subsections, we discuss the XLL approach

by addressing these four requirements. For a graphical view

of XLL, please refer to Fig. 3 at the end of this section.

A. Artifact Specification and Access

Since we are interested in linking artifact types together,

we must first know about available artifact types and their

relationships. In many languages, artifacts are linked together

in a tree- or graph-like structure; for example, a common

structure in OO languages is having classes which contain

methods which in turn contain statements; we must be able to

navigate such a structure to find the artifacts we want to link.

Furthermore, we must be able to retrieve individual instances

for actual link resolution, and have a link back into the source

code for navigation, annotation, and refactoring.

In general, multi-language relationships can be handled on

three levels: On the source code level, using language-specific

meta-models, and using language-spanning meta-models.

Using source code requires parsing (mostly) text, for exam-

ple using regular expressions. Supporting more complicated

code relationships such as method calls are difficult to imple-

ment using this approach; furthermore, the link descriptions

have to deal with all intricacies of a language which can get

very technical.

The second option is using a more abstract but still

language-dependent representation of artifacts. This approach

requires one adapter per language which manages the artifact

types and instances. This approach allows re-using existing

tools (such as the Eclipse JDT) and is able to hide complicated

operations from link specifications in the adapter.

Finally, using a common meta-model allows writing anal-

ysis and refactoring rules in a language-agnostic way. How-

ever, this approach disregards the different concepts (such as

classes, tables, etc.) available in each language. We believe

that multi-language systems are created on purpose and that

the difference between language artifacts is significant. Fur-

thermore, a common model must be changed for each new

language added.

We have thus adopted the second option, i.e. language-

specific meta-models, for the XLL approach. This requires

adapters similar to those of Moise and Wong [11]: the generic

cross-language semantic link evaluation framework we pro-

pose must be able to access, based on user-provided link

specifications, the relevant artifacts. The following information

and functionality should be available:

• The set of artifact types available in the language, their

attributes, and the associations between them. A conve-

nient way for specifying this is using a meta-model, for

example on the basis of EMF.

• Access to the actual instances of each artifact type, their

attributes and associated artifacts. In other words, access

to a concrete model instance for the meta-models defined

above.

A language adapter must be implemented by hand for each

language to be supported by the framework, though it can re-

use existing meta-models (for example from the Atlant Ecore

zoo [24]) and, for providing instances, existing AST parsers

(for example the JDT, or XML DOM implementations). It is

not necessary for the approach in general that meta-models are

EMF-based; existing AST nodes or custom artifact types can

be used as well. The functionality required from the language

adapter is shown in Fig. 1; only the first three methods of

LanguageAdapter are relevant here, the others and the

XLLFramework interface will be discussed later.

Fig. 1. Language Adapter and Framework Interface

There is great freedom in the design of the individual

language meta-models and adapters. On one end of the scale,

we can provide a complete model of a language, enabling

access to all elements but complicating the meta-models and

models. On the other end, we can only provide the elements

necessarily for link specification, which leads to smaller meta-

models but less expressive power in the link specifications.

B. Link Type Specification

We now come to specifying the actual cross-language

semantic links, i.e. the links between artifacts in different

languages. To enable our use cases of program understand-

ing, code analysis and refactoring, we require the following

information to be present in these specifications:

• The artifact types which are to be linked and the path

to the individual artifacts linked in each language. As

mentioned above, an artifact may only be relevant if

embedded in certain other artifacts; for example, the

call to has_a in Ruby is only relevant for us if it

occurs in a class extending ActiveRecord. The path to

each artifact is not only relevant for catching appropriate

artifacts, but also for checking edits: If the path changes,

we might break a semantic link.

• Constraints on the artifact attributes necessary for es-

tablishing a correct link. For example, the name of a

class in Ruby is the singularized version of the name

of a table; other relation types may include substring

extraction, concatenation, or simply equality. Besides

ensuring semantic linking, this information can also be

used for suggesting refactorings. It should be possible to

specify relations in a bidirectional way.

• Hierarchical relationships between links. For example,

looking for component references in an Android activity

98

transformation RubyOnRails (ruby: Ruby, rdb: RDB) {

top relation ClassToTable {
classname: String;
error domain ruby c:Class { superClass = sc:Class { name=’ActiveRecord’ }, name= classname}
error domain domain rdb t:Table { name=pluralize(classname) }

}

top relation BelongsToToTable {
entityname: String;
error domain ruby m:MethodInvocation { name=’belongs to’, parent=c:Class {},

parameter= p:Parameter { value= entityname }}
error domain rdb col:Column { name= entityname + ’ id’, table= t:Table{}}
when { ClassToTable(c, t) }

}

top relation HasOneManyToTable {
entityname, classname: String;
error domain ruby m:MethodInvocation { parent= c:Class { name=underline2camel(classname)},

((name = ’has one’, parameter= p:Parameter { value= singularize(entityname) }) |
(name = ’has many’, parameter= p:Parameter { value= entityname }) }

error domain rdb col:Column { name= classname + ’ id’, table= t2:Table{ name= entityname }}
when { ClassToTable(c, t) }

}
}

transformation Android2XML (djava: DJava, xml: XML) {

top relation ActivityToLayout {
layoutName : String;
error domain djava a:Activity { referencedLayout=layoutName }
warn domain xml f:XMLFile { parent = d:Directory { name=’layout’, parent= dd:Directory { name= ’res’ }},

name = layoutName + ’.xml’ }
}

top relation IDReferenceDeclaration {
reference: String;
error domain djava lr:LayoutReference { activity= a, referencedID=reference }
nocheck domain xml attr:Attribute { name=’android:id’, value= ’@+id/’ + reference },

parent= e:Element { file= f }}
when { ActivityToLayout(a, f) }

}
}

Fig. 2. Example Cross Links: (1) Ruby on Rails, (2) Android

is only relevant if a layout has been identified before.

Furthermore, link specifications should support recursive

calls to enable more complex use cases.

Given these requirements, a relational, constraint-based

specification seems to be well suited for describing, and

later evaluating, link types. One architecture and language

which fits this description and supports many of the above

requirements is the MOF Query/View/Transformation (QVT)

Relations specification, or QVT/R in short [25]. Although the

aim of QVT/R is describing model transformations and thus

has a different aim than what we intend to do here, we can re-

use many of the ideas, syntax, and semantics. In the following,

we will thus use QVT/R for the specification of link types and

as the basis for link resolution.
The root element of a QVT/R specification is a transforma-

tion which consists of relations, each of which takes artifacts

from at least two model domains and relates them based on

their associations and attributes. QVT/R uses so-called object
and collection templates to describe the elements to be bound

to variables; property template items describe which element

or elements are expected to be bound to a property of a

matched object. A transformation is always executed in a

certain direction, i.e. with a target domain. A domain can

be annotated with either checked or enforced; depending on

this flag, missing link partners are either only reported or

automatically created.

QVT/R thus already provides us with the idea of specifying

relations between model elements (in XLL: artifacts), and with

the separation of domains (in XLL: languages); furthermore,

constraints are used to bind artifacts together based on the

values of associations and attributes. Other aspects of QVT/R

match less well with our approach. We have thus adapted

QVT/R and parts of OCL [26] with regard to both specification

(syntax and intended semantics) and link resolution (next

99

subsection). The changes to the specification are as follows:

• The QVT/R specification does not support disjunctions.

This makes sense from a transformation perspective, as

it is not clear with a disjunction which element to create

without asking the user. In our case, we only deal with

user-triggered refactorings on successful links, and can

thus allow disjunctions in template specifications (using

the pipe (|) sign).

• We are interested in both successful and unsuccessful

links: Successfully matched artifacts enable program

understanding and refactorings, unsuccessfully matched

artifacts are problems. However, sometimes checking into

one direction does not make sense, or the missing links

are only to be regarded as warnings, not as errors. We

thus allow annotation of domains with this effect (using

nocheck, warning, and error).

• Finally, we are interested in bidirectional checking, i.e.

checking each referenced domain as a target. This re-

quires that all functions, even complicated ones, must be

bidirectional as well. Consider our Ruby example: Here,

tables carry the pluralized name of classes. We assume

that such use cases occur often and thus allow the use of

externally implemented bidirectional functions.

Fig. 2 shows the links present in our two case studies in the

extended QVT/R textual syntax. The top specification shows

the Ruby on Rails relations; the bottom deals with Android.

We first consider the Ruby on Rails transformation. The

specification first lists which languages (and thus language

adapters) are to be used; in this case the Ruby language

(termed ruby in the example) and the RDB language (termed

rdb in the example). The language adapter provides both the

meta-model of this language and thus the artifact, attribute,

and association names used in the relations (for example the

Class artifact and the parent association) and, for later

evaluation, concrete instances from source code.

The Ruby on Rails transformation consists of three relations.

The first one deals with matching classes to tables: For each

class based on ActiveRecord, a table must exist with the

pluralized name of the class, and the other way around. The

other two relations refer to the ClassToTable relation using

a when clause; i.e. they are only evaluated if a link between

class and table exists. An error is reported in both directions.

In the relation BelongsToTable, we check that for each

belongs_to method invocation in a class, a column in the

matching table with the tableized name of the referenced entity

(and the string _id) exists. Again, this is an error in both

directions, i.e. if a table has an _id column, there must be a

belongs_to statement in the corresponding class.

Finally, we have the HasOneManyToTable relation in

which we handle both has_one and has_many statements.

In both cases, we require a column in the table of the

referenced entity. In Ruby, has_many uses the original table

name of the entity, while has_one uses the singularized

version. This relation uses a disjunction: Moving from Ruby

to RDB requires that we have an _id column in either case;

moving from RDB to Ruby requires either a has_many or

has_a statement.

Secondly, we consider the Android link. Here, we have

the two domains (and thus languages and language adapters)

DJava and XML. The names reflect the fact that XML is

indeed a generic language adapter while we have created a

specific adapter for the Java-based Android framework. We

have two relations: Inside the first relation, we link activities

with XML files: The layout referenced in the activity must

exist as an XML file. Inside the second relation, we match

layout references (extracted from [this.]findViewByID
methods by the language adapter) with attribute specifications

in XML starting with the string @+id/, which is the Android

way of defining IDs.

In the first relation, the dJava pattern is annotated with error,

meaning that if we do not find a matching XMLFile for an

activity, this is indicated as an error. The other direction, i.e.

an XMLFile exists but not an activity, is only a warning. In

the second relation, a missing ID declaration in XML for a

reference is again an error; if, however, a declaration exists

which is not used we do not report anything.

The following section discusses how these link specifica-

tions are actually resolved.

C. Resolving Semantic Links

Link resolution is concerned with processing concrete el-

ement instances according to the link specifications from the

previous subsection. In contrast to QVT/R, the model instances

in XLL are actually language artifacts which stem from

code written in the underlying programming language. They

are created by the language adapters referenced in the link

specifications, which are invoked by the XLL framework for

a) checking that the referenced meta-model elements actually

exist (thus validating the linking specification) and b) for

retrieving instances of these elements.

For the use cases of program understanding and program

analysis, the result of evaluating a link specification is thus

a list of successful and unsuccessful semantic links. These

links are extracted from the set of all artifacts provided

by the language adapters as follows: In a first step, the

patterns present in each relation domain are evaluated in-

dependently, generating a set of matching language-specific

artifacts. However, the individual domain patterns not only

contain constraints on the associations and attributes of source

artifacts, but also constraints for variables used across multiple

domain patterns (such as layoutName in the Android rela-

tion ActivityToLayout). These variables carry the actual

cross-language link information.

Thus, the second step consists of solving the conjunction

of the constraints from the individual domain patterns. This

evaluation yields the set of artifacts for which the combined

constraints hold true — these are the successful semantic links.

Any artifact matching an individual domain pattern which

is not present in the set of successful semantic links is in

violation of the link, and is reported as a warning or an error

(as specified in the relation).

100

A relation may also contain where and when clauses which

affect the set of successful links and the set of non-matched

artifacts. A where clause specifies additional constraints that

semantic links must satisfy, reducing the set of successful

links and enlarging the unsuccessful ones. Thus, it can be

characterized as a postcondition. By contrast, the when clause

is a precondition: It reduces the set of artifacts to be considered

for linking before the patterns of the current relation are

evaluated. Since the relation is only considered when the

precondition is satisfied, the when clause restricts the set of

unsuccessful links.

Although each pattern may refer to any number of variables,

links are only established between the root variables of each

domain pattern in a relation. Thus, evaluating a relation leads

to a list of successful matches between root variables, and a

list of root variables without counterpart(s).

We now discuss changes in the underlying source code.

Firstly, any edit within a language on a published artifact

(i.e., an artifact provided by the language adapter) may change

links, leading to new links being created or existing links being

broken. This applies to both direct edits and refactorings. In

general, we react to such changes similar to other IDEs: by

continually running analysis in the background and annotating

code. For example, if a link breaks, we add an error annotation;

if a link is newly established, we add a link annotation.

There is one use case where we can offer more than the

“after-the-fact” annotations, namely certain refactorings on

successfully linked artifacts. Since most cross-language links

are established by names, rename refactorings on these names

must be propagated to artifacts in other languages. If a rename

refactoring is invoked in any one language on an attribute of

an artifact which takes part in a link (not necessarily as a root

variable), we can again use the link specification to compute

the change propagation.

Change propagation is a subset of the QVT/R enforcement

mechanism; however, in XLL, we start from successfully

established links. Based on a change (i.e., an artifact, an

attribute, and a new value) we first determine the set of affected

links — if none is affected, the refactoring may proceed

without cross-language impact. If there are affected links, we

evaluate the source domain of each artifact link relation and

compute the impact of the change on variables shared by

the relation domains. If there is an impact, we propagate the

change through the shared variables to the linked attributes of

artifacts in the target domain. In contrast to computing artifact

links, this process considers attribute values as modifiable if

they are in relation to changed shared variables.

Changes in target artifact attributes must again be consid-

ered as input to the process since they may, in turn, affect other

artifact links. Thus, change propagation must be repeated until

the set of changes is stable.

If the changes lead to a consistent state, the process reports a

set of new values for attributes of artifacts in the target domain.

These can be used to trigger language-specific refactorings

(more on this below in link exploitation). If a consistent state

cannot be reached, the user is notified and may abort the

current refactoring or continue with performing the required

changes manually.

D. Exploiting Link Information

The successful and unsuccessful links created by the link

resolution can be used in our three use cases as follows:

• Program Understanding. The key to understanding multi-

language software is the information about where seman-

tic links occur. Having successfully evaluated the links

as discussed above, we can now use successful links to

visualize the connections between languages in textual or

graphical form, or help developers navigate the code. For

example, we can offer navigation functionality between

an Android activity and the corresponding layout file.

• Program Analysis. As we have seen before, non-

resolvable semantic links mostly lead to errors at runtime

— which is the worst possible time. A key aim of this

approach thus was moving the detection of such errors

to design-time. With the evaluation of the cross-links,

we immediately get information about missing links

including a severity. This information can be annotated

in an IDE; it can also be used as part of a build process

(Ant, Maven) to produce build errors or failures which

can be listed in a continuous integration tool.

• Refactoring. Finally, a common method for improving

code quality and readability is refactoring, i.e. changing

source code while keeping its semantics. As mentioned

in the last section, changes proposed by a refactoring of

artifacts in a successful link can be evaluated in the link

specification. Through change propagation, a property of

a target artifact in another language might need to be

changed, which means a second, derived refactoring in

that language. Thus, that refactoring does not need to be

explicitly defined but is a result of keeping links intact.

For example, if a class is renamed in Ruby, we can

issue a refactoring with the new pluralized name for the

corresponding table to keep the link intact.

The three use cases discussed above work best when inte-

grated into an IDE, and thus existing views and refactorings

can be re-used. To enable such an integration, we require

additional functionality from the XLL framework and from

the language adapters (compare again Fig. 1):

• Successfully bound artifacts of one language should be

reported to the language infrastructure, such that errors

can be reported and successful links annotated with

navigation information.

• To enable code navigation, a language adapter must

provide the ability to open a certain artifact in an editor

or view for the user in the underlying IDE.

• Refactorings triggered by the user on a specific artifact

must be reported to the XLL framework along with

the artifact, affected attribute, and new values for the

attribute, such that linked artifacts can be identified and

changes to them suggested as well. We call this a request
for refactoring help.

101

Language Adapter Language Adapter

XLL Framework

Link Specification

Language Adapter

Source Code

based on

Instances
(Model)

IDE
integration

refactoring /
reveal provide

read / execute

provide

Metamodel

Fig. 3. The XLL Approach

• Finally, the XLL framework must be able to trigger

refactorings in a certain language. For example, if a class

is renamed in Ruby, link resolution will suggest a change

in a table as well. This change should then be performed

by a Rename Table refactoring in the RDB language

infrastructure.

With this discussion of link exploitation, we have completed

our description of the XLL approach to cross-language linking.

An overview of the complete approach in graphical form

is shown in Fig. 3. The figure shows the XLL framework

(middle) which evaluates the user-defined link specification

(top). On the bottom, the language adapters provide access

to language-specific details: The link specification is based on

the meta-model; the framework furthermore requires instances

for evaluating the link specification and an IDE integration for

code navigation and refactoring.

V. IMPLEMENTATION

We have implemented a version of our XLL approach into

the integrated development environment Eclipse, and have

checked the two real-life applications mentioned in section II

to ensure that the implementation is working as expected.

To support the framework, we have implemented four

language adapters as plug-ins for Eclipse: Two generic ones

(Ruby and XML), one semi-generic one (Ruby-based RDB),

and one specialized one (“Android Java”). All four provide

meta-models and instances based on the underlying source as

well as refactoring and navigation support.

Support for the three use cases is as follows:

• Program understanding is supported by annotating linked

artifacts and offering code navigation via pop-up menu.

As seen in Fig. 4 (1) for the Android example, the XLL

Fig. 4. Example: (1) Navigation (2) Error Marking (3) Refactoring

navigation allows developers to open a layout XMLFile

(the counterpart of an Activity) directly from the code.

• Code analysis is supported via warning and error anno-

tations in the source code; for example, an ID reference

without declaration is flagged as an error and listed in

the problems view. Fig. 4 (2) shows an ID reference

in an Android activity which is not declared in the

corresponding layout file.

• Finally, refactorings are supported using custom

language-specific refactoring participants. These

participant check whether the refactoring affects an

artifact which takes part in a successful link. If so,

the XLL framework is triggered to determine whether

refactorings in other languages are required, which can

then be invoked. Fig. 4 (3) shows a rename of the

Android XML layout file event.xml with language-

spanning changes in the Java source code (in particular,

the reference to event).

While the first two use cases are relatively easy to im-

plement, the third requires the availability of language-

specific refactorings. Unfortunately, good refactoring support

in Eclipse is only available for Java and, to a limited extent,

Ruby [27]. Since the XLL refactoring approach is dependent

on language-restricted refactorings, we have implemented sim-

ple, side-effect additional refactorings for our prototype; we

hope to be able to use more external refactorings in the future.

Another goal for the XLL framework is adding more generic

language adapters and sample link specifications.

102

VI. CONCLUSION

In this paper, we have discussed the problem of cross-

language links between artifacts in different languages which

form one Multi-Language Software System (MLSA) [4]. These

links are often neither explicitly specified nor checked by

single-language tools. In fact, the specification of these links

is mostly deeply embedded within framework code and only

resolved at runtime, which means that errors are only found at

runtime as well [21]. We believe that this situation should be

changed, as it lessens maintainability, creates fear of changes,

and in general leads to brittle code.

After a thorough review of related work, we have concluded

that a generic approach to cross-language link specification

with encompasses program understanding, analysis, and refac-

toring has not yet been attempted. We have then set out to

create such an approach, termed XLL (Cross-Language Links).
The XLL approach is based on explicitly specifying seman-

tic links between artifacts written in different languages using

QVT/R. The specification is evaluated based on the meta-

model and model instances of individual languages which are

provided on-the-fly by language adapters. Evaluation creates

successful and unsuccessful cross-language links which are

used for code navigation and error annotation within an IDE

as suggested e.g. in [13], [17].

If a refactoring in any single language affects an artifact in

a successful link, the semantic link specification can be used

again to propose additional changes in the code to keep the

link intact. If this is not possible, an error is reported.

Our approach leaves a lot of freedom regarding the design of

the language-specific meta-model design to adapter providers;

thus, adding new languages is straightforward. With regard to

the link specification, the QVT/R language provides a user-

friendly way of writing down constraints. QVT/R specifica-

tions can be used bidirectionally (cf. [19]), which further eases

development. For refactorings, we re-use the algorithms and

implementations present in existing languages.

We believe that the XLL approach can help developers

gain more confidence in multi-language code since errors are

reported during design time, artifact navigation is possible

across languages, and refactorings show warnings or sugges-

tions where cross-language links are involved.

Acknowledgements: This work has been partially sponsored

by the EU project ASCENS, 257414.

REFERENCES

[1] T. C. Jones, Estimating Software Costs, 2nd ed. New York, NY, USA:
McGraw-Hill, Inc., 2007.

[2] H.-C. Fjeldberg, “Polyglot programming. a business perspective,” Master
Thesis, Norwegian University of Science and Technology, 2008.

[3] M. Fowler, Domain-Specific Languages. Addison-Wesley Professional,
2010.

[4] P. Linos, W. Lucas, S. Myers, and E. Maier, “A metrics tool for multi-
language software,” in Proceedings of the 11th IASTED International
Conference on Software Engineering and Applications, ser. SEA ’07.
Anaheim, CA, USA: ACTA Press, 2007, pp. 324–329.

[5] D. Thomas, D. Hansson, L. Breedt, M. Clark, J. D. Davidson, J. Geht-
land, and A. Schwarz, Agile Web Development with Rails. Pragmatic
Bookshelf, 2006.

[6] R. Meier, Professional Android 2 Application Development, 1st ed.
Birmingham, UK, UK: Wrox Press Ltd., 2010.

[7] P. Linos, “Polycare: A tool for re-engineering multi-language program
integrations,” in Engineering Complex Computer Systems. Ft. Laud-
erdale, Florida, USA: IEEE Computer Society Press, November 1995,
pp. 338–341.

[8] P. K. Linos, Z.-h. Chen, S. Berrier, and B. O’Rourke, “A tool for
understanding multi-language program dependencies,” in Proceedings
of the 11th IEEE International Workshop on Program Comprehension,
ser. IWPC ’03. Washington, DC, USA: IEEE Computer Society, 2003,
pp. 64–73.

[9] B. Kullbach, A. Winter, P. Dahm, and J. Ebert, “Program comprehension
in multi-language systems,” in Proceedings of the Working Conference
on Reverse Engineering (WCRE’98), ser. WCRE ’98. Washington, DC,
USA: IEEE Computer Society, 1998, pp. 135–144.

[10] L. Deruelle, N. Melab, M. Bouneffa, and H. Basson, “Analysis and
manipulation of distributed multi-language software code,” in SCAM.
IEEE Computer Society, 2001, pp. 45–56.

[11] D. L. Moise and K. Wong, “Extracting and representing cross-language
dependencies in diverse software systems,” in Proceedings of the 12th
Working Conference on Reverse Engineering, ser. WCRE ’05. Wash-
ington, DC, USA: IEEE Computer Society, 2005, pp. 209–218.

[12] Mo DeJong and Erin Odenweiller and Syd Pol and Ian Roxborough,
“The Source Navigator IDE,” 2008, http://sourcenav.sourceforge.net/.

[13] B. Cossette and R. J. Walker, “Dsketch: lightweight, adaptable depen-
dency analysis,” in SIGSOFT FSE, G.-C. Roman and K. J. Sullivan,
Eds. ACM, 2010, pp. 297–306.

[14] Eclipse Foundation, “The Eclipse Project,” 2012,
http://www.eclipse.org/.

[15] R.-H. Pfeiffer and A. Wasowski, “Taming the confusion of languages,”
in Proceedings of the 7th European conference on Modelling
foundations and applications, ser. ECMFA’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 312–328. [Online]. Available: http://dl.acm.
org/citation.cfm?id=2023522.2023552

[16] Eclipse Foundation, “EMF: The Eclipse Modeling Framework,” 2010,
http://eclipse.org/modeling/emf/.

[17] D. Strein, H. Kratz, and W. Lowe, “Cross-language program analysis and
refactoring,” in Proceedings of the Sixth IEEE International Workshop
on Source Code Analysis and Manipulation, ser. SCAM ’06. Wash-
ington, DC, USA: IEEE Computer Society, 2006, pp. 207–216.

[18] D. Strein, R. Lincke, J. Lundberg, and W. Löwe, “An extensible meta-
model for program analysis,” IEEE Trans. Softw. Eng., vol. 33, no. 9,
pp. 592–607, Sep. 2007.

[19] N. Chen and R. Johnson, “Toward refactoring in a polyglot world:
extending automated refactoring support across java and xml,” in Pro-
ceedings of the 2nd Workshop on Refactoring Tools, ser. WRT ’08. New
York, NY, USA: ACM, 2008, pp. 4:1–4:4.

[20] Eclipse Foundation, “Eclipse Java Development Tools (JDT),” 2012,
http://www.eclipse.org/jdt/.

[21] M. Kempf, R. Kleeb, M. Klenk, and P. Sommerlad, “Cross language
refactoring for eclipse plug-ins,” in Proceedings of the 2nd Workshop
on Refactoring Tools, ser. WRT ’08. New York, NY, USA: ACM, 2008,
pp. 1:1–1:4.

[22] H. Schink, M. Kuhlemann, G. Saake, and R. Lämmel, “Hurdles in multi-
language refactoring of hibernate applications,” in ICSOFT (2), M. J. E.
Cuaresma, B. Shishkov, and J. Cordeiro, Eds. SciTePress, 2011, pp.
129–134.

[23] K. Kontogiannis, P. Linos, and K. Wong, “Comprehension and mainte-
nance of large-scale multi-language software applications,” in Proceed-
ings of the 22nd IEEE International Conference on Software Mainte-
nance, ser. ICSM ’06. Washington, DC, USA: IEEE Computer Society,
2006, pp. 497–500.

[24] Atlant, “Ecore Zoo,” 2012, http://www.emn.fr/z-
info/atlanmod/index.php/Ecore.

[25] OMG (Object Management Group), “Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification 1.1,” OMG (Object Manage-
ment Group), Specification, 1 2011, http://www.omg.org/spec/QVT/.

[26] ——, “Object Constraint Language 2.3.1,” OMG (Object Management
Group), Specification, 1 2012, http://www.omg.org/spec/OCL/.

[27] T. Corbat, L. Felber, and M. Stocker, “Refactoring support for the eclipse
ruby development tools,” Diploma Thesis, HSR University of Applied
Sciences Rapperswil, 2006.

103

