A W N

ul

O 00N O

10

11
12

13

14
15
16

17
18
19

20

21

22

23

24
25

26
27

28

29
30

31

32
33

34

The Spring Rule Set

Linking Bean Specification to Class Declaration
This section describes how to link bean specifications to Java types. There are three options for linking
beans, depending on their properties.

For all Spring Bean Specifications (SIOCBean) b, do the following:

Option 1: Constructor-Based Bean

If the b.class is set, the b.factoryBean is not set, and b.factoryMethod is not set, we have a “constructor-
based bean specification”, that is, the Spring framework normally uses a constructor method directly
inside a given class to instantiate this bean (an exception to this rule is a FactoryBean subtype, see
below).

To link such a bean specification, we have to find a ClassDeclaration t in Java such that the value
retrieved from “Get Fully Qualified Name” (with t) matches the value of b.class.

If we do not find such a t, we report an error for b that “No corresponding Java type”.

If we find such a t, we have already found the correct class. We have to check whether this class
implements the interface FactoryBean, though —in this case, not the constructor, but the return type of
the getObject() method is used.

Option 1-1:
If “Subytping” reports true (with t and ft) --- ft having been retrieved with “Get Type For Name” (with
“org.springframework.beans. Factory.FactoryBean”)), then:

We link b to t as the “FactoryBean Class”.

We try to find a MethodDeclaration md in t.bodyDeclarations where
e md.name == “getObject”
e count(md.parameters) ==0

If we find such an md, we have a valid FactoryBean-based implementation: We link b to md.type.type
actT as the “Bean Class”. We continue with:

e “Linking the Bean Attributes” (with b and actT —i.e., the actual bean type)
e  “Linking bean properties” (with b and t —i.e., the factory class)

If we do not find such an md, we report an error for b (“FactoryBean-based bean without getObject()”).

Option 1-2:
Else: The type t is not FactoryBean-based, so we link t to b as the “Bean Class”.

We then check the constructor in the bean as described in the following text box:

Option 1-2-1
The count is null of SIOCConstructorArg instances in b.valuedElements.

In this case, there are two options:




35
36
37
38

39
40
41

42
43

44
45
46

47
48
49

50
51

52

53
54
55

56
57
58

59
60

61
62

63
64

65

66

67
68

69
70
71

Option 1-2-1-1

t.bodyDeclarations does not include an instance of ConstructorDeclaration, i.e. there is no declared
constructor. In this case the Java default constructor is available, all is fine, but we cannot link
anything. We add an informational report.

Option 1-2-1-2
There is at least one ConstructorDeclaration in t.bodyDeclarations. In this case, we have to find a
ConstructorDeclaration cd in t.bodyDeclarations where there are count(cd.parameters) ==

In this case, we link cd to b (“Constructor”).
If we cannot find such a cd, we report an error for the bean (“no constructor found”).

Option 1-2-2
The count is not null of SIOCConstructorArg instances in b.valuedElements. In this case, the
parameters must match.

For each ConstructorDeclaration cd instance in t.bodyDeclarations, we check that the conditions as
described in “Linking Spring Constructor Arguments to Method Parameters” (with
SIOCConstructorArgs in b.valuedElements as well as cd.parameters) hold.

If we find one, we link the constructor to the bean.
Else, we report an error for the bean (“no constructor found”).

We also continue with:

e “Linking the Bean Attributes” (with b and t)
e “Linking bean properties” (with b and t)

Option 2: Factory-Method Based Bean

If the b.class is set, and b.factoryMethod is set, but b.factoryBean is not set, we have a “factory-method
based bean specification”, that is, the Spring framework uses a static method to retrieve the actual Java
class instance corresponding to this bean.

To link such a bean specification, we try to find a TypeDeclaration factT in Java where the name reported
by “Get Fully Qualified Name” (with fact) matches the value in the b.class.

We already link factT to b (“Factory Class”). If we cannot find such a class, we report an error (“Factory
Class not found”);

To find the bean class, we must look further: We try to find a MethodDeclaration md in
factT.bodyDeclarations where

e md.name exactly matches the value of the b.factoryMethod
e md.modifier.static is set to true,

e md.returnType.type is not a primitive type, that is, not an instance of PrimitiveTypeXXX — which
includes PrimitiveTypeVoid.

Due to overloading in Java, there might be multiple such methods (MethodDeclaration md). We thus
need to check that the parameters match according to “Linking Spring Constructor Arguments to
Method Parameters” (with SIOCConstructorArgs in b.valuedElements as well as md.parameters).




72
73

74

75
76

77

78
79

80

81

82
83

84
85

86

87

88

89

90

91

92

93

94

95

96
97
98

99
100
101
102

If we were not able to find such an md, we report that we could not find the “Factory Method” for the b,
and stop here.

If we have found such an md, we link md to b as the “Factory Method”.

We also get md.returnType.type t. Again, the same logic regarding FactoryBean applies, i.e. there are
two options for linking:

Option 1:

If “Subytping” reports true (with t and ft) --- ft having been retrieved with “Get Type For Name” (with
String “org.springframework.beans. Factory.FactoryBean”)), then:

We link b and t (“FactoryBean Class”).
We find, in t.bodyDeclarations, a MethodDeclaration md2 where

e md2.name == “getObject”

e count(md2.parameters) == 0.

If such an md2 is found, we use md2.returnType.type as finalT and we link b and finalT (“Bean Class”).
We continue with

e “Linking the Bean Attributes” (with b and finalT)

e “Linking bean properties” (with b and t — the FactoryBean instance)

If we do not find such an md2, we report an error (“FactoryBean-based bean without getObject()”).
Option 2

Else (i.e. we do not have a FactoryBean instance):

We directly link t to b as the “BeanClass”.

We continue with the following:

e “Linking the Bean Attributes” (with b and t)

e “Linking bean properties” (with b and t)

Option 3 (Factory-Bean based Bean)

If the b.class is not set, but b.factoryMethod is set and b.factoryBean is set, we have a “factory-bean
based bean specification”, that is, the Spring framework uses a polymorphic method in another bean to
retrieve the actual Java class instance corresponding to this bean.

To link such a bean specification, we first need to get the bean referenced in the factoryBean property of
b. If this bean has not already been linked with the description above (“Linking Bean Specification to
Class Declaration”), this needs to be done first. If it does not work out, we cannot continue linking. We
add a warning report here.




103
104

105

106
107

108
109
110

111
112

113

114
115

116

117
118

119

120

121
122

123
124

125

126

127

128

129

130

131

132

133

Now, we need to find the referenced factory method within the TypeDeclaration c linked to b. Thus,
inside of the c.bodyDeclarations, we try to find a MethodDeclaration md where:

e md.name exactly matches b.factoryMethod

e md.returnType.type is not a primitive type, that is, not an instance of PrimitiveTypeXXX — which
includes PrimitiveTypeVoid.

Due to overloading in Java, there might be multiple such methods (MethodDeclaration md). We thus
need to check that the parameters match according to “Linking Spring Constructor Arguments to
Method Parameters” (with SIOCConstructorArgs in b.valuedElements as well as md.parameters).

If we were not able to find such an md, we report that we could not find the “Factory Method” for the b,
and stop here.

If we have found such an md, we link md to b as the “Factory Method”.

We also get md.returnType.type t. Again, the same logic regarding FactoryBean applies, i.e. there are
two options for linking:

Option 1:

If “Subytping” reports true (with t and ft) --- ft having been retrieved with “Get Type For Name” (with
String “org.springframework.beans. Factory.FactoryBean”)), then:

We link b and t (“FactoryBean Class”).
We also find, in t.bodyDeclarations, a MethodDeclaration md2 where

e md2.name == “getObject”

e count(md2.parameters) == 0.

If such an md2 is found, we use md2.returnType.type as finalT and we link b and finalT (“Bean Class”).
We continue with

e “Linking the Bean Attributes” (with b and finalT)

e “Linking bean properties” (with b and t — the FactoryBean instance)

If we do not find such an md2, we report an error (“FactoryBean-based bean without getObject()”).
Option 2

Else (i.e. we do not have a FactoryBean instance):

We directly link t to b as the “BeanClass”. We continue with the following:

e “Linking the Bean Attributes” (with b and t)

e “Linking bean properties” (with b and t)

If none of the three options above hold true, we add a warning for b.



134

135
136
137
138

139
140

141
142
143
144

145
146
147

148
149
150

151
152
153

154

155
156

157
158
159

160

161
162

163
164
165

166

167
168

Linking Spring Constructor Arguments to Method Parameters

This section handles comparing a list of SIOCConstructorArg elements springArgs with a list of
SingleVariableDeclaration elements javaArgs. The goal here is to see whether the
SIOCConstructorArgument artifacts match the SingleVariableDeclaration artifacts (and thus, the Method
or Constructor matches) — and if all of them match, link those artifacts.

Depending on the number of constructor argument artifacts and the number of single variable
declarations, we have two options:

Option 1

If the number of elements in springArgs and the number of elements in javaArgs is different, there is no
match.

Option 2

On the other hand, if the number is the same, we have to check the individual elements (except if both
lists are empty obviously). So, for each of the elements in springArgs ca we check the following: How ca
is linked depends on its properties “index”, “name”, and “type”:

Option 2-1 (Implicit Index)

If none of the three properties is set, we assume that the linking is done in-order and thus proceed with
the current element number as the index (Option 2-2).

Option 2-2 (Index)
If the index property is set, then we refer to the parameter by number. That is, we must find a
SingleVariableDeclaration svd in the javaArgs where

e theindex of svd is the same as ca.index

e The type of the injected element within ca must match the type of svd, as discussed in “Type
Checking Injected Elements” (with ca.value and svd.type.type).

Option 2-3 (Name)
If the name property is set, then we refer to the parameter by name. That is, we must find a
SingleVariableDeclaration svd in javaArgs where

e svd.name equals ca.name

o The type of the injected element within ca must match the type of svd, as discussed in “Type
Checking Injected Elements” (with ca.value and svd.type.type).

Option 2-4 (Type)
If the type property is set, then this property refers to a Java type (by referencing its fully qualified
name). Thus we must find a SingleVariableDeclaration svd in javaArgs where

e svd.type.type == Type with qualified name in ca.type

e The type of the injected element within ca must match the type of svd, as discussed in “Type
Checking Injected Elements” (with ca.value and svd.type.type).




169
170
171

172

173
174

175
176

177
178

179

180

181

182
183

184

185
186

187

188

189

190
191
192
193
194

195
196
197
198

199

200
201

If, for each artifact, the options show success, we link the pairs of SIOCConstructorArgument and
SingleVariableDeclaration (“Factory Parameter”) and report success.
If not, we return false.

Linking the Bean Attributes

This section describes how to link the direct properties of a bean specification. This only makes sense if a
bean specification b has been successfully linked to a TypeDeclaration t.

A bean specification may have none, one or two of the properties “init-method” and “destroy-method”
set. These properties point to methods of the linked TypeDeclaration t.

Option 1: Init-Method property is set

So, if the init-method property is set we must find a MethodDeclaration md in t.bodyDeclarations :
e name property has exactly the same value as b.init-method
e md.parameters list is empty (no parameters)
e md.returnType.type is an instance of PrimitiveTypeVoid (no return type)

If we find such an md, we link the init-method property to this md (“Init Method”).
Else, we report an error for the init-method on b (“Init Method Not Found”).

Option 2: Destroy-Method property is set
Likewise, if the destroy-method property is set, we must find a MethodDeclaration md in
t.bodyDeclarations :

e md.name equals b.destroy-method

e md.parameters list is empty (no parameters),

e md.returnType.type is an instance of PrimitiveTypeVoid (no return type)

If we find such an md, we link the destroy-method property to this md (“Destroy Method”).
Else, we report an error for the destroy-method on b (“Destroy Method Not Found”).

Linking Bean Properties

This section describes how to evaluate and link SIOCProperty artifacts to artifacts in Java. This depends
on the parent SIOCBean b of p having already been linked to a TypeDeclaration td before.

For all SIOCProperty instances p (from b.valuedElements), we try to find either a matching
MethodDeclaration or a (FieldDeclaration-based) VariableDeclarationFragment inside td. This includes
methods and fields defined in possible super classes: Using “Retrieving Inherited Body Declarations”
(with td), we arrive at a list | of all BodyDeclarations visible in td.

Option 1: We try to find a MethodDeclaration md instance in the list | such that:

e md.returnType.type is instance of PrimitiveTypeVoid

e count(md.parameters)is 1



202
203

204

205
206

207
208

209
210
211
212
213
214
215

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

235
236
237

e If p.value (SIOCInjectedValue) val set: the type of val matches the type of the parameter md.
parameters[0].type.type t, as discussed in “Type Checking Injected Elements” (with val and t).

e md.name is equal to the concatenation of “set” + the first-letter-uppercased version of p.name.

Option 2: If we have not found such an md, we try to find a FieldDeclaration fd in | such that:

e If p.value (SIOCInjectedValue) val is set: the type of val matches the type fd.type.type t, as
discussed in “Type Checking Injected Elements” (with val and t)

e Find a fragment frag in fd.fragments whose frag.name is equal to p.name.

If such an md is found, we link p and md (“Setter Method”). If such a frag is found, we link p and frag
(“Bean Property”). Else, we report an error for p (“No Method or Field found for Property”).

Type Checking Injected Elements

This section describes how to check the type of a SIOCInjectedValue value element from Spring against a
Type t from Java.

This check relies on the fact that there are only a limited number of subclasses of SIOCInjectedValue
which are simply enumerated. Thus, we evaluate the actual type of the SIOCInjectedValue.

Option 1 (List)
The value is of type SIOCList. In this case:

e Option 1: if the tis instance of ArrayType, report true.
e Option 2: Else check whether “Subtyping” (with t and ct), where ct is taken from ”Get Type For
Name” (with “java.util.List”), is true.

Option 2 (Set)
The value is of type SIOCList. In this case:

e Option 1: if the tis instance of ArrayType, report true.
e Option 2: Else check whether “Subtyping” (with t and ct), where ct is taken from ”"Get Type For
Name” (with “java.util.Set”), is true.

Option 3 (Map)

The value is of type SIOCMap. We report whether “Subtyping” (with t and ct), where ct is taken from
“Get Type For Name” (with “java.util.Map”) is true.

Option 4 (Properties)

The value is of type SIOCProperties. We report whether “Subtyping” (with t and ct), where ct is taken
from “Get Type For Name” (with “java.util.Properties”) is true.

Option 5 (Value / Null)

The value is of type SIOCSimpleValue or SIOCNull. In this case, we refrain from checking the result
further to prevent having to decide on the actual type of SIOCValue. We report true. This could be
extended in the future.



238

239
240
241
242

243

244
245
246
247
248

249
250

251

252
253
254

255

256
257

258
259

260
261

262

263
264

265
266
267

268
269

270
271

Option 6 (Inner Bean)

The value is of type SIOCBean. In this case, we have a nested inner bean which we need to resolve first
using the rules laid down in “Linking Bean Specification to Class Declaration”, yielding type c. If not
successful, we report false. We also (helpfully) add a warning for value. Else, we report whether
“Subtyping” (with c and t) reports true.

Option 7 (Bean Reference)

The value is of type SIOCBeanReference br. That is, a bean is referenced, either directly or through one
or more aliases. Thus, we first find the actual bean through one or more SIOCAlias in br.reference
(transitively). When we finally get to a bean refBean, it must be resolved to a Type c using the rules laid
down in “Linking Bean Specification to Class Declaration”. If not successful, we report false and also
report a warning for value. Else, we report whether “Subtyping” (with c and t) reports true.

Get Fully Qualified Name

Given a TypeDeclaration t:
To find the fully qualified name of a type, we take the string from the name property of t.

Option 1: If t.package is set and points to a PackageDeclaration d, we prefix the string with “.” and the
string in name of t.package. We recursively continue with d.package, prefixing names with “.”, until we
reach the top (i.e. .package is not set)

Option 22: Else we directly return the string from the name property.
Subtyping
Given two Type instances sub and super:

Return true if sub is a subtype (or the same type) as super. Thus, if sub==super, return true. Else, repeat
recursively for

e Option 1: sub.superClass, or, if not successful,
e Option 2: for all elements in t.superinterfaces.

If all fails, report false.

Retrieving Inherited Body Declarations

Given a Type type:

If type is an instance of ClassDeclaration, we need to recurse to type.superClass until we reach a non-set
superclass. In each step, we add all elements from type.bodyDeclarations to a list. The list is returned. If
type is not an instance of ClassDeclaration, we simply return type.bodyDeclarations.

Get Type For Name

Given a fully qualified name in a String s:

Find a TypeDeclaration t in the Java model where the name reported by “Get Fully Qualified Name”(for t)
matches s.




272

273

274
275
276
277

278

279
280

281

282

283

284

285
286
287

288
289
290

291

292
293
294

295

296
297
298

299
300

301
302

303

The Hibernate Rule Set

Linking Entity References to Class Declarations

In this section, we link HQLEntityReference artifacts on the HQL side to Java ClassDeclaration artifacts
with an Entity annotation on the right-hand side. HQLEntityReference is an abstract artifact which has
two known concrete subclasses: HQLNamedEntityReference and HQLInferredEntityReference,
corresponding to the two cases discussed above.

Thus, for each HQLEntityReference er:

Option 1

If er is an HQLNamedEntityReference, we attempt to find a ClassDeclaration cd on the Java side where
e er.name matches cd.name
e we try to find an Annotation artifact a inside of cd.annotations where
0 a.type.type is an AnnotationTypeDeclaration t

0 “Get Fully Qualified Name”(with t) matches “javax.persistence.Entity”

If we find such a ClassDeclaration cd, we link cd to er (“Entity Class”).
Else, we report an error for er (“No corresponding Java entity”).

Option 2

If er is a HQLInferredEntityReferences we process the expression ex linked in er.whereFrom according to
“Linking Attribute Accesses to Java Elements” (with ex). If the expression could be linked, we get an
instance of VariableDeclarationFragment frag linked to the expression.

If no fragment has been found, we report an error for er (“No corresponding Java entity”).

Otherwise, we get the type t of frag (which resides in frag.variablesContainer.type.type). This may be a
standard Java type, or one of the collection types, in which case we are talking about a many-valued
association. In this case, we do not want to link the container type, but the type parameter.

Thus, what we link depends on the type of t:

Option 2-1
We check whether “Subtyping” (with t and ct), where ct is taken from “Get Type For Name” (with
“java.util.Collection”), is true.

If so, we link er to the one (and only) TypeParameter of t as type to be linked, i.e.
t.typeParameters[0].type (“Entity Class”)

Option 2-2
Else, we link er and t (“Entity Class”)




304
305

306
307
308
309
310
311
312
313

314
315
316

317

318
319
320

321

322
323
324

325
326

327

328
329

330
331
332

333

334
335
336
337

338
339
340

341

Linking Attribute Accesses to Java Elements

This section describes how to link HQL HQLAttributeAccess artifacts. This is done in two contexts:

a) This section is referenced from another section for a specific instance of an HQLAttributeAccess
(taken from a HQLInferredEntityReference). We refer to this single given HQLAttributeAccess as
ref.

b) We also use this section independently for all HQLAttributeAccess artifacts ref found in the
model which are part of an expression within a WHERE clause, and whose “Parent” (with ref) is
neither an instance of HQLInferredEntityReference nor an instance of HQLAttributeAccess (i.e.
we only start with top-level references).

To resolve ref we have to proceed recursively (due to the qualifier property). We start by checking (and
resolving) the artifact in ref.qualifier q to a VariableDeclarationFragment frag and its type, which is a
ClassDeclaration cd.

Option 1

If q is, again, an instance of HQLAttributeAccess, we resolve this reference to a
VariableDeclarationFragment frag recursively — that is, see again “Linking Attribute Accesses to Java
Elements” (with q).

There are two options for the type of frag in frag.variablesConainer.type.type t.

Option 1-1
If “Subtyping” (with t and ct), where ct is taken from ”"Get Type For Name” (with “java.util.Collection”), is
true, we retrieve cd from frag.variablesContainer.type.type.typeParameters[0].type.

Option 1-2
Else, cd is taken from frag.variablesContainer.type.type.
Option 2

If g is an instance of HQLIDReference, we get the HQLIdentificationVariable var present in ref.reference,
and furthermore the HQLEntityReference entref present in var.entity.

We now link entref as discussed in “Linking Entity References to Class Declarations”. If this link is
successful, we now have access to the linked ClassDeclaration cd for further type checks. If there is no
linked cd, we cannot continue here and report a warning for ref that the root reference cannot be linked.

Option 3

If g is an instance of HQLImplicitEntityAccess acc, we directly get the entity from acc.entity . We now link
HQLImplicitEntityAccess as discussed in “Linking Entity References to Class Declarations”. If this link is
successful, we now have access to the linked ClassDeclaration cd for further type checks. If there is no
linked cd, we cannot continue here and report a warning for ref that the root reference cannot be linked.

Now that the qualifier is resolved and we have access to a ClassDeclaration cd instance, we proceed to

linking the attribute reference to a field in this class and, possibly, superclasses. Thus, using “Retrieving
Inherited Body Declarations” (with cd), we arrive at a list | of all BodyDeclarations visible in cd.

We try to find a FieldDeclaration artifact fd inside | such that

10




342
343

344
345

346
347

348

349
350
351

352

353
354

355
356

357
358

359

360
361

362
363

364
365

366
367
368

369

0 We try to find a VariableDeclarationFragment frag inside fd.fragments such that
frag.name is equal to ref.name.

If we cannot find such a frag, we issue an error for ref (“No corresponding attribute”).
Else, we link ref and frag (“Entity Attribute Reference”); frag stays available for further linking.

Get Fully Qualified Name

Given a TypeDeclaration t:
To find the fully qualified name of a type, we take the string from the name property of t.

Option 1: If t.package is set and points to a PackageDeclaration d, we prefix the string with “.” and the
string in name of t.package. We recursively continue with d.package, prefixing names with “.”, until we
reach the top (i.e. .package is not set)

Option 22: Else we directly return the string from the name property.

Subtyping

Given two Type instances sub and super:

Return true if sub is a subtype (or the same type) as super. Thus, if sub==super, return true. Else, repeat
recursively for

e Option 1: sub.superClass, or, if not successful,
e Option 2: for all elements in t.superinterfaces.

If all fails, report false.

Parent

Given an object obj in one of the language models:

In EMF, the parent always resides in the eContainer property, which is non-null except for the root
element. Thus, return obj.eContainer.

Retrieving Inherited Body Declarations

Given a Type type:

If type is an instance of ClassDeclaration, we need to recurse to type.superClass until we reach a non-set
superclass. In each step, we add all elements from type.bodyDeclarations to a list. The list is returned. If
type is not an instance of ClassDeclaration, we simply return type.bodyDeclarations.

11



370

371

372
373
374

375
376
377

378
379

380

381

382
383

384
385

386

387

388

389

390

391

392

393
394
395
396

397

398
399

400
401
402

The Android Rule Set

Linking Layout References to Layouts

This section describes how to link a layout reference (in the form of a MethodInvocation) from the Java
model to a LayoutFile f in the Android model. Depending on the type of the method invoked, the
LayoutFile is additionally linked to either a ClassDeclaration or a VariableDeclaration.

For all MethodlInvocation mi in Java (and the invoked method mi.method md), we have one of two
principal options for linking. Each of these options depends on a rather large number of prerequisites. If
the prerequisites do not hold true, the mi is ignored.

Option 1
If

e |f md.name is “setContentView”, and
e md.abstractTypeDeclaration is of type ClassDeclaration (called cd)

e “Get Fully Qualified Name” (with cd) is either “android.app.Activity” or “android.view.Window”
or “android.app.Dialog”

then we have found an interesting method declaration which declares a layout for a whole class. We still
need to check whether the parameter of this method call carries a readable layout identifier for us.

This is the case if
e there is one argument (count(mi.arguments) = 1),
e mi.arguments[0] is of type SingleVariableAccess (called acc)
e acc.qualifier is of type TypeAccess ta,
e ta.type is a ClassDeclaration with a name of “layout”,
e ta.qualifier is of type TypeAccess ta2,
e ta2.typeis a ClassDeclaration with a name of “R”.

The “layoutname” we were looking for is acc.variable.name. If we have found such an mi, this is an
“interesting mi” and we want to find a LayoutFile in Android with the same name (+”.xml”) as the
“layoutname” identified above. If there is no readable layoutname, we issue a warning report to this mi
that the mi was not checked.

We use “Finding a Layout given a Name” (with layoutname) to look for this LayoutFile f.

If we have found one, we link mi and f (“Referenced Layout”).
Else, we report an error for mi (“Referenced Layout Not Found”).

Each setContentView() call might be either called on a variable, or on the current instance of a class
(“this”, or no qualifier). In preparation of checking widgets later on, we need to link the element to which
the layout applies, which is either a variable or a class declaration.

12



403
404
405
406

407

408
409
410

411

412
413
414

415

416
417
418

419
420

421

422

423
424
425

426

427

428

429

430

431
432

433
434

435

Option 1-1

If mi.expression ex is not set or is an instance of ThisExpression, we link the ClassDeclaration lcd the mi
is defined in, which we find with “Get First Parent Of Type” (with mi and the metaclass
“ClassDeclaration”), to the layout file f (“Referenced Layout”)

We continue with “Checking Widget References to Widgets in a Layout” (with lcd and f).

Option 1-2
If mi.expression ex is an instance of SingleVariableAccess, we link the VariableDeclaration vd which is
found in ex.variable to the layout file f (“Referenced Layout”).

We continue with “Checking Widget References to Widgets in a Layout” (with vd and f).

Option 1-3
If options 1-1 and 1-2 do not hold, we add an informational message that we do no further checking for
this layout reference.

Option 2

If md.name is “inflate”, we have a more complex situation since we are inflating the layout into a
variable instead of setting it for the class we are in. There are also two different inflate methods
depending on the target, so we have two inner options again.

Option 2-1
If

e the md.abstractTypeDeclaration is of type ClassDeclaration (called cd)

e “Get Fully Qualified Name”(with cd) is “android.view.View”

then we have found an interesting method declaration which inflates a layout into a variable. We still
need to check whether the parameter of this method call carries a readable layout identifier for us. This
is the case if

e there are at least two arguments (count of mi.arguments is >=2),
e the second of which (mi.arguments[1]) is of type SingleVariableAccess (called acc),
e acc.qualifier.type is a ClassDeclaration with a name of “layout”, and
e acc.qualifier.qualifier.type is a ClassDeclaration with a name of “R”.
The “layoutname” we were looking for is acc.variable.name.

Option 2-2
If

e the type in which this method is declared (md.abstractTypeDeclaration) is of type
ClassDeclaration (called cd) and

e “Get Fully Qualified Name” (with cd) is “android.view.LayoutInflater”.

13



436
437

438

439

440

441

442

443
444

445
446

447
448

449
450
451
452
453

454

455
456

457
458
459

460
461
462

463

464

465
466

467

468

then we have another situation in which we inflate a layout into a variable. We still need to check
whether the parameter of this method call carries a readable layout identifier for us. This is the case if

e there is at least one argument (count of mi.arguments is >=1),

e the first of which (mi.arguments[0]) is of type SingleVariableAccess (called acc),
e acc.qualifier.type is a ClassDeclaration with a name of “layout”, and

e acc.qualifier.qualifier.type is a ClassDeclaration with a name of “R”.

The “layoutname” we were looking for is acc.variable.name.

We are back from Options 2-1 and 2-2 and continue with our newly found “layoutname”. If we have not
found such a “layoutname”, we issue a warning message.

Now, we again want to find a LayoutFile in Android with the same name (+”.xml”) as the “layoutname”
identified above. We use “Finding a Layout given a Name” (with layoutname) to look for this LayoutFile f.

If we have found one, we link mi and f (“Referenced Layout”).
Else, we report an error for mi (“Referenced Layout Not Found”).

Different from “setContentView”, the “inflate” methods return an element which is the inflated layout
from the given LayoutFile. Future “findViewByID” methods are called on this element if it is assigned to a
variable (the common use case). Thus, to check for correctness of widget retrievals, we need to first
identify the variable the element is assigned to, and then continue checking method invocations on this
variable.

Thus, firstly, we check whether the returning element is assigned to anything at all.

Option 2-3
If “Parent” (with mi) is an instance of VariableDeclaration d, we directly use d.

Option 2-4
If “Parent” (with mi) is an instance of Assignment a, we check whether a.leftHandside is a
SingleVariableAccess sva. If so, we use d from sva.variable.

Option 2-5
If “Parent” (with mi) is instance of CastExpression ce ,we have a cast in-between invocation and
assignment, and we check “Parent”(with ce). This parent element is either

Option 1: directly a VariableDeclaration (and thus d), or

Option 2: again be a SingleVariableAccess (as in 2-4), then d is found in sva.variable.

If we have not found a d, we cannot do any further checking for this link. This is worth an informational
message.

Otherwise, we link LayoutFile f and VariableDeclaration d (“Referenced Layout”), and we continue to

e “Checking Widget References to Widgets in a Layout” (with d and f).

14




469
470

471

472

473
474

475

476

477

478
479

480
481
482

483

484

485
486

487

488

489

490

491
492

493

494

495

496

497

498

Finding a Layout given a Name

This section describes how to find an Android layout (file) given a layoutname.
We try to find a LayoutFile f in the Android model such that:

e f.parentDirectory points to an XLLFolder d whose name property equals “layout”,

e and if d again has a d.parentDirectory pointing to an XLLFolder d2 which has a name property of

e and f.name has a value equal to the concatenation of the layoutname + “.xml”
..we return f. Else we return false (which will result in a missing link).

Checking Widget References to Widgets in a Layout

This section describes how to link widget references (as created by a MethodInvocation to the
findViewByld method).

As context for this check, we have a) either a ClassDeclaration cd or a VariableDeclaration d — as
indicated by the linked element for the LayoutFile — and b) the LayoutFile f itself. The idea is that the

“findViewByld” method is called either inside the class cd (on “this”) or on the variable declared in d.

For each MethodInvocation mi in the model:

mi.method.name must be equal to “findViewByld”, else the mi is ignored.

Option 1

If we have a ClassDeclaration cd as context:
e Either
O Option 1: mi.expression is not set, or
0 Option 2: mi.expression is set to an instance of ThisExpression

e “Is Transitive Parent” (for mi and cd) is true

Option 2

If we have a VariableDeclaration d as context:
e mi.expression property leads to a SingleVariableAccess artifact sva with

e sva.variable set to d.

Back from the two options, we continue with a so-found MethodInvocations mi as follows:
We have to first check whether they make use of a readable widget identifier. This is the case if
e there is one argument (count of mi.arguments is == 1),

e this argument (mi.arguments[0]) is of type SingleVariableAccess (called acc)),

15



499

500

501

502
503
504

505
506

507

508

509
510

511
512

513
514

515
516

517
518
519

520
521
522

523

524

525
526

527
528

529
530

531

e acc.qualifier.type is a ClassDeclaration with a name of “id”, and
e acc.qualifier.qualifier.type is a ClassDeclaration with a name of “R”.
The “widgetid” we were looking for is acc.variable.name.

If we cannot find a readable identifier we issue a warning message (“No readable widget id”), and
cannot continue checking this mi. Else, we go checking whether the link is correct. This consists of two
steps.

First, the referenced widget must be actually there in the linked layout file, which is, despite code
generation of the R file, not necessarily true. Thus, we try to find a AView w instance such that

e “Is Transitive Parent” (for w and f) is true

e The value in w.id matches the “widgetid” defined above

If we find such a w, we link it to the mi (“Referenced Widget”).
Else, we report an error for this mi (“Referenced Widget Not Found In This Layout”).

Second, if the widget retrieved via findViewByld is cast and assigned to a variable, it must have the right
(Java) type for this operation to succeed, which is also not checked by Android before runtime.

Thus, we check again whether and where the return element of this mi is assigned to. This is the same
check as above for “setContentView”:

Option 2-1
If “Parent” (with mi) is an instance of VariableDeclaration d, we directly use d.

Option 2-2
If “Parent” (with mi) is an instance of Assignment a, we check whether a.leftHandside is a
SingleVariableAccess sva. If so, we use d from sva.variable.

Option 2-3
If “Parent” (with mi) is instance of CastExpression ce ,we have a cast in-between invocation and
assignment, and we check “Parent” (with ce). This parent element is either

Option 1: directly a VariableDeclaration (and thus d), or

Option 2: an Assignment a; if a.lefthandside is a SingleVariableAccess sva, then d is found in sva.variable.

If we have not found a d, we cannot do any further checking for this link. We issue an informational
report (“No variable for this widget reference”). Otherwise, get the type t of d:

Option 2-4
t instanceof VariableDeclarationFragment: the type is in t.variablesContainer.type.type;

Option 2-5
t instanceof SingleVariableDeclaration: the type is in t.type.type.

Besides this type, we also require the type of the widget. There are two options:

16




532
533
534

535
536
537
538

539
540
541

542
543

544
545

546
547

548
549

550

551
552
553

554

555
556

557
558

559
560

561

562
563

564
565

Option 2-6
w is an instance of ACustomView. In this case the fully qualified name of the custom type resides in the
class property (as qualifiedName).

Option2-7

Else: In this case it is one of the standard Android types (e.g.an AEditText artifact would link to
android.widget.EditText) and we get the well-known type out of the Android documentation table as
qualifiedName.

In either case, we get a string (qualifiedName) with the fully qualified name of the expected type. We can
thus check that “Subtyping” holds true (with t and qt), where qt is “Get Type For Name” (with this
qualifiedName)

If this is the case, we are satisfied (no linking required). We add an informational message to this effect.
If this is not the case, we report an error for d (“Wrong type for linked widget”).

Parent

Given an object obj in one of the language models:

In EMF, the parent always resides in the eContainer property, which is non-null except for the root
element. Thus, return obj.eContainer.

Get Fully Qualified Name

Given a TypeDeclaration t:
To find the fully qualified name of a type, we take the string from the name property of t.

Option 1: If t.package is set and points to a PackageDeclaration d, we prefix the string with “.” and the
string in name of t.package. We recursively continue with d.package, prefixing names with “.”, until we
reach the top (i.e. .package is not set)

Option 22: Else we directly return the string from the name property.

Subtyping

Given two Type instances sub and super:

Return true if sub is a subtype (or the same type) as super. Thus, if sub==super, return true. Else, repeat
recursively for

e Option 1: sub.superClass, or, if not successful,
e Option 2: for all elements in t.superinterfaces.

If all fails, report false.

Get First Parent of Type

Given are:

e an arbitrary Object obj from one of the languages
e a Metaclass instance mclass from one of the languages

17




566
567

568
569

570

571
572

573
574

Now, recursively go through “Parent” (with obj) to the parent, etc., until either the parent is not set or is

an instance of mclass.

Is Transitive Parent

Given are two Objects this and possibleParent.
Repeat “Parent” (with this) until the parent is either null or possibleParent. Return false or true.

Get Type For Name

Given a fully qualified name in a String s:

Find a TypeDeclaration t in the Java model where the name reported by “Get Fully Qualified Name”(for t)

matches s.

18



